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ABSTRACT

The PLANS (Primary Land Arctic Navigation System), developed at DREO, optimally
integrates a directional gyro/gyrocompass, an odometer, a 3-axis strapdown magnetometer, a GPS
receiver, a Transit receiver, a baroaltimeter and a digital terrain elevation map, for the purpose of
navigating a land vehicle in the Canadian Arctic under potentially adverse conditions. This report
derives the exact form of the discrete driving noise covariance matrix Qk which is needed to propagate
the covariance matrix in the Kalman filter used by PLANS. It is shown that the exact Qk does not have
a Cholesky UDUT decomposition. However, a good approximation is shown to have the necessary
decomposition for use in the Biermann-Agee-Turner formulation of the Kalman filter. This
approximate decomposition is then found. A general result on the preservation of block diagonal form
under UDUT decomposition is also proven.

RISUMt

Le syst~me de navigation terrestre PLANS, conqu au CRDO, int~gre de faqon optimale un
gyroscope A deux modes (gyrocompas et directionnel), un odometre, une sonde magnetique A trois
axes, un recepteur GPS, un r6cepteur TRANSIT, un altim~tre barometrique ainsi qu'un carte
d'dldvation numdrique. PLANS a te conqu pour opdrer dars l'arctique canadien A bord de
v6hicules terrestres. Ce rapport prdsente la formulation exacte de la matrice de covariance Qk
necessaire pour la propagation de la matrice de covariance du filtre Kalman utilisd par PLANS. It est
d6montrd que Qk ne pent 8tre ddcompose selon la m6thode Cholesky UDUT. I1 est toutefois
demontr6 qu'on peut obtenir d'une bonne approximation la d6composition necessaire pour utiliser
la formulation Biermann-Agee-Turner du filtre Kalman. Cette decomposition approximative est
ddmontrde. I1 est aussi demontr6 que la decomposition UDUT preserve ia forme diagonale.
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EXECUTIVE SUMMARY

PLANS (Primary Land Arctic Navigation System) is a multi-sensor integrated navigation

system developed at DREO. PLANS employs an 8 state Kalman filter to optimally integrate the sensor

data from a Transit receiver, a GPS receiver, a gyrocompass/directional gyro, an odometer, a

magnetometer and a baroaltimeter. In the process of deriving and implementing the Kalman filter

equations, one of the many matrices that must be found is the discrete process noise covariance matrix

Qk (also known as the driving noise covariance).

Initially, as is common practice, an approximation was used to evaluate this Qk" During a

detailed analysis of simulation results, the behaviour of the PLANS position error covariance matrix, P,

under propagation (i.e. without position measurements from Transit or GPS) came under suspicion.
This behaviour is governed solely by the state transition matrix 4, (tA t) (at time t over an interval A t)

and the driving noise covariance, Qk. The discrete driving noise covariance matrix, Ok, over the
interval At, is itself defined by the continuous driving noise power spectral density matrix, Q, and the

state transition matrix, -t (t,A t). Therefore these matrices came under special scrutiny. Since 4 (t,A t)
was already exact this then led to the desire for a more exact Qk . The purpose of this report is

therefore to derive the "exact" form of Ok (and find its Cholesky decomposition for use in PLANS).

Since PLANS employs a "square root" formulation of the Kalman filter equations for improved
numerical stability, it is therefore necessary to find the Cholesky UDUT decomposition of Qk (where

U is an upper triangular matrix and D is diagonal). For the original approximation, Qk was diagonal so

that its decomposition was trivial. With the more exact Qk this is no longer the case. Furthermore the

exact Qk is not constant, so that the use of a numerical routine to find its decomposition would require

considerable computation, making an explicit decomposition highly desireable.

It is proven in this report that in general UDUT decomposition preserves block diagonal form,

and therefore that the process of finding an exact decomposition of a large block diagonal matrix can

be reduced to the much simpler problem of decomposing the smaller blocks. This is then applied to the

Qk for PLANS, so that instead of having to decompose an 8x8 matrix, it is only necessary to decompose
three lxl matrices (which is trivial), one 2x2 matrix and one 3x3 matrix. The 2x2 matrix is easily

decomposed exactly. The 3x3 matrix however causes some difficulty. Its UDUT decomposition is easily

enough found, however it is not a Cholesky decomposition because its D component has negative
diagonal elements. This is not particularly surprising since the 3x3 matrix is not positive definite and

therefore the existence of its Cholesky decomposition is not guaranteed.

It is thus shown that a Cholesky decomposition of the exact Ok is not possible, and an
approximation is still required. An approximation is found which is exact for all but a few of the small
off-diagonal terms of Qk-

As it turned out, thue "-uspicious" behaviour of the error state covariance matrix P was not due
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to the inexactness of Ok, but in fact could be explained by closer examination of the effect of 4C

Although in hindsight this behaviour seems obviously correct, the suspicion arose because of the

intuitive expectation that the position uncertainty (represented by bottom right 2x2 block of P, since the

position error states are the last two elements of the state vector) should increase, or at least not

decrease, in the absence of position measurements. Although it is true that the covariances of most

elements of the state vector behave in this way (since they are independent Markov processes), it is not

generally true for the position covariance. This is because of a geometric effect which can lead to a

cancellation of errors in some situations, such that the position covariance locally decreases. In the case

of PLANS this could be due to the effect of the speed and heading errors while returning to the

starting point partially cancelling the errors accumulated during the outbound portion of the trip (a

perfectly constant heading and speed error would perfectly cancel if movement were on a plane). Since

this geometric effect is correctly modelled in the PLANS Kalman filter, the covariance behaves

accordingly.

Although the "problem" that this effort was intended to solve turned out not to be a problem, a

more exact form of the driving noise covariance is of course desireable in any case, and the general

result on preservation of block diagonal form under decomposition is also quite useful.
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1. INTRODUCTION

Reference [1] describes the multi-sensor integrated navigation system called PLANS (Primary
Land Arctic Navigation System), along with the 8 state Kalman filter used for integration of the sensor

data. In the process of deriving and implementing the Kalman filter equations, one of the many
matrices that must be found is the discrete process noise covariance matrix, Ok (also known as the

driving noise covariance). In reference 121 an approximation was used to evaluate this Qk. During a

detailed analysis of simulation results, the behaviour of the PLANS position error covariance matrix, P,

under propagation (i.e. without position measurements from Transit or GPS) came under suspicion.

This behaviour is governed solely by the state transition matrix, 4)(tAt), and the driving noise

covariance, Qk, as follows:

T
Pt+At =  ((tAt)Ptql (tAt) + Qk (1)

where the discrete driving noise covariance matrix, Qk, over the interval At is defined by the

continuous driving noise power spectral density matrix, Q, and the state transition matrix, 4) (tAt), as

follows (see for example reference [51):

At

Ok = t 4(t,) Q4 T(t,-) dr (2)

0

Therefore these matrices came under special scrutiny, which then led to the desire for a more

exact Ok, since 4) (t,r) was already exact. The purpose of this report is therefore to derive the "exact"

form of Qk and find its Cholesky decomposition for use in PLANS.

Since PLANS employs a "square root" formulation of the Kalman filter equations for improved
numerical stability (see reference 131), it is therefore necessary to find the Cholesky UDUT

decomposition of Qk (where U is an upper triangular matrix and D is diagonal). For the original

approximation, Qk was diagonal so that its decomposition was trivial. With the more exact Qk this is no
longer the case. Furthermore the exact Qk is not cunstant, so that use of a numerical routine to find its
decomposition would require considerable computation, making an explicit decomposition highly
dcsireable.



In fact it turns out that a Cholesky decomposition of the exact Ok is not possible, as will be
shown below, and an approximation is still required. This approximation however only involves some of
the small off-diagonal terms, and is exact for most terms of Qk"

S

As it turned out, the "suspicious" behaviour of the error state covariance matrix P was not due
to the inexactness of Ok, but in fact could be explained by closer examination of the effect of .
Although in hindsight this behaviour seems obviously correct, the suspicion arose because of the
intuitive expectation that the position uncertainty (represented by bottom right 2x2 block of P, since the
position error states are the last two elements of the state vector) should increase, or at least not
decrease, in the absence of position measurements. Although it is true that the covariances of most
elements of the state vector behave in this way (since they are independent Markov processes), it is not
generally true for the position covariance. This is because of a geometric effect which can lead to a
cancellation of errors in some situations, such that the position covariance locally decreases. In the case
of PLANS this could be due to the effect of the speed and heading errors while returning to the
starting point partially cancelling the errors accumulated during the outbound portion of the trip (a
perfectly constant heading and speed error would perfectly cancel if movement were on a plane). Since
this geometric effect is correctly modelled in the PLANS Kalman filter, the covariance behaves
accordingly.

Although the "problem" that this effort was intended to solve turned out not to be a problem, a
more exact form of the driving noise covariance is of course desireable in any case, and the general
result of Appendix A is also quite useful.
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2. THE CONTINUOUS Q MATRIX FOR PLANS

Since the discrete Ok matrix is found by integrating the continuous power spectral density
matrix, Q, folded with the propagation matrix 4)(tr), as in (2), we must first examine these two
matrices.

As was shown in reference [2] the PLANS error state vector contains 5 independent first order
Markov processes and three states which are derived from the integrals of these Markov processes.
Thus the continuous power spectral density matrix Q has diagonal elements for each of these Markov
processes, as follows:

ql 0 0 0' 0 0 0 0'

0 q2 0 0 0 0 0 0

0 0 q3  0 0 0 0 0

0 0 0 q4  0 0 0 0
00 00 00(3)

0 0 0 0 0 0 0 0

0 0 00 0q600
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

where the qi are the constant values of the PSD's (power spectral densities) of the white
driving noise for each of the individual Markov states. These can be expressed in terms of the standard
Markov process error model parameters (correlation time Ti and steady state covariance pi ) as follows
(see any standard text, such as [5]):

qi = 2pi/Ti (4)

The PLANS error state transition matrix, 4)(tr), is also derived in reference [2], where it is
shown to be (at time t, over the interval 7):

3



er/1 0 0 0 0 0 0 0

o e-1/T 2  0 0 0 0 0 0

0 0 e--/T 3  0 0 0 0 0

41(0,71 0 0 0 e-/40 0 0 0 (5)

o 0 0 T4 (1-e7/T 4) 1 0 0 0

o 0 0 0 e /6 0 0 0

0 0 0 0 -TSsinr 7ScoO1 0

0 0 0 0 incosO 7SsinO'0 1

where the Ti are Markov process correlation times (constants), S(t) is the vehicle speed, 0 (t) is

the vehicle heading and T is the propagation period.
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3. THE DISCRETE Qk MATRIX FOR PLANS

The discrete driving noise covariance matrix, Qk, over the interval At, is defined by the
continuous driving noise power spectral density matrix, Q, and the state transition matrix, 'F(t,7T), as

shown in equation (4)"

At

Ok = Jf(tT)QFT(tT) dT (6)

0

where from equations (3) and (5) we can see that the integrand is:

e - - / Tl 0 0 0 0 0 0 0

0 e-T/T 2  0 0 0 0 0 0 q:

0 0 e-r/T3  0 0 0 0 0 I 0

0 0 0 e-- r/T 4  0 0 0 04 'T (7)

0 0 0 T4(l e'r 1T 4  1 0 0 0 0

e-T/T6 0 0 0 q

0 0 0 0 7Si1O7S0O 1 0 0

0 0 0 0 7sco -SsirO 0 1

Now from this we can al-eady see that Qk will have the same block diagonal form as 1b, namely

three 1-blocks and a 5-block. As shown in Appendix A, this block diagonal form is also preserved under
UDUT decomposition. Therefore the top three 1-blocks have trivial decompositions, since they are
already diagonal. Thus for i = 1,2,3 we have:
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At

Qk(ii) = J e-T/Tiqie-T/Ti dr (8)

0

-Ti . -2r-/Ti t-2 i e  (9)

= Tiqi(1 - e'2At/Ti) (10)
2

Now as seen in equation (4) above, for the steady state Markov process xi, the magnitude of
the PSD of the white driving noise is qi, which is related to the steady state covariance pi and the
correlation time Ti according to:

qi = 2pi/Ti

Substituting this into equation (10) gives, for i= 1,2,3:

Qk(ii) = Pi(i - e - 2AtTi) (II)

We will now restrict our attention to the remaining 5-block. Since this is non-diagonal, it
requires a non-trivial UDUT decomposition. Henceforth for simplicity Q, Qk and 4D shall refer to the
corresponding 5-blocks rather than the full matrices. Thus, from (7) we have:

e - / T 4  0 0 00

T4(1-e-r/T4 ) 1 0 00 0 0 0 00
40 4T 0 0 e-/l 6 0 0  0 0q 6 00 pT (12)

0 -rSin0 TScos0 1 0 0 0 0 00
0 0 0 00 j

0 TScosO TSsinO 0 1
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0 0 00 e-T1T4 T4(1-er T4 ) 0 0 0

q4T4(I-e -7/T4 ) 0 0 00 0 1 0 -7SsirbiSCOS

0 0 q6e -r/T6 0 0 0 0 e-/T 6 rscosg 7SsirO (13)

0 0iq 6 ScOS'0 0 0 0 0 0

0 0 rq6Ssirx 0 0

q-2T/T4 q4T 4(1_e-r/T4 e--r/T4  0 0 0

q4T4(l-e - q4T4-e - /T 4 )2  0 0

0 0 q6e - 27/T6 -rq6S cos4e-/T 6  %q6Ssine-/T
6

0 0 Tq6ScoDser/T
6 q6S2cos

2 - q6S2si& Co
207

0 0 rq6Ssirxe/T 6 q6S 2sin cO° 72  q6 S2sin2 72

(14)

It is now clear that this Ok also has a block diagonal form, with a 2-block and a 3-block.

Assuming that the time dependent terms (speed S and heading 0) are constant over the integration

interval, the above matrix can be explicitly integrated (as in equation (6)). For convenience we will

label the individual terms as follows:

qll q12 0 0 0

q21 q22 0 0 0

0 0 q3 3 q34 q35 (15)
0 0 q4 3 q44 q45

0 0 q53 q54 q55

where by symmetry qij = qji. Then qll can be found as in equations (8) to (11) above:

At

1l = q 4 e-2Tq4dr (16)

0
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-T4 -27T4 1At

T4 q -2.ltfT (7

=p4( - e-2AtT4) (18)

Similarly for the other components:

At

q1 fJT4q 4 (1 - eT/T4)e~/T4dr
0

T2q 4 i - e-AtI)2 jt

T2

T4 p4 (1 - e-tf (19)

At

q3 3  = q6 e 2/T~ar

0

= p6(1 - e6e (as in q11 ) (20)
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At

q4 3  = fJq 6 scosoie-T/Thdr

0

e - /T6 At
= q6SCo - (-TT I

(1/T6) 2 0

= -T6q 6 SCOB6[e-At/T6(At + T6) - T6]

= 2T6p6SCoO[O1 - e-At/T6(l + At/T6)] (21)

Similarly

At

q 5 3  = fJq 6 sinO -Te7-/T6 &T
0

= 2T6p6SsinO[1 - e-At /T6(l + At/T6)] (22)

At
q54  = fJq6 S2 sin~cosO 'T2 dT

0

= q6S2BincoOL__~

=q6S2sinOcoBD 2 .3 (23)
3

At

0

9



= q6 S2cos2Or3I At

= q6 S2CoO
2 i (24)

3

Similarly

At

q55  = J q6 S2 sin26r 2dr
0

= q 6 S2sin2G 7.3 lt

= q6s Bin2O-
2  (25)
3

At

q2 J T42q 4 (1 - e7-/T42dT
0

At

= T4 2 q 4 f (1 - 2 eT7/T4 + e-2/T4)dT
0

= T4 2 q 4 CT + 2T4eT/T ye 04-r/

At/T4_ T4-2Atl - T4 L
= T4 2 q4 (At + 2 T 4 e-tT Fe 22tf T

At/T4 1-2At/T4 -.= T4 3 q 4 (At/T4 + 2e- -e2

= T42 (3At. + 4 e-At/T4 - e-2AtI4 - 3) p4 (26)
T4

10



Now by substituting equations (18) through (26) into equation (15) we can write the discrete

5X 5 Ok matrix as follows:

Ok =

P4(1-eAtj') T4P(1-_Ct/2 0 0 0

TP4 (1-e'6tl T42 p4 t +4/ra-e4-t/4- 3) 0 0 0
T4

0 0 p6(l-&AVT) 2T6Sco4Ap 6  ZT6SsixA p6

0 0 T6ScoAp6 2t_3S2cos2p 6 2Ae3s2sii coa P6
3T6 3T6

0 0 2T6SsinOAp 6 2At3 S2s cop 6  2At 3 S2sin2Op 6
3T6 3T6

(27)

where:

A 1 e-At/T6(l - At (28)

As indicated in reference [11, the correlation times (T4 and T6) and steady state covariances

(p4 and p6) for the Markov processes representing the error in the gyro drift rate and the odometer

scale factor are assumed to be constants. Therefore it is easy to see how this process driving noise

covariance matrix Ok behaves numerically for different discretization intervals At. Using the values

given in [21, we have for At = 60 seconds:

0.03P4 P4 0 0 0

P4 4 OP4 0 0 0

0 0 0 .0 3 P6 237P6 ScosO 237p6 Ssirn

O k =---(29)
0 0 237 P6 Sco&9 40p 6 S2 cos2O 40p 6 S2 siDOcos9

0 0 237 P6 SsinO 4OP6 S2 sinO cosO 4OP6 S2 sin2O

11



and for At = i second:

0.0005P4 0.0003p4 0 0 0

0.0003p 4 O.O01p4 0 0 0

0 0 0.0005P6 0.0003 P6ScoO O.0003p 6 SsinO

Qk = 1(30)
0 0 0.0003P 6 ScoSO 0.0002p 6 S2 cos0 0.0002p 6 S2 sinocoso

0 0 0.0003 P6 SsinO 0.0002p6 S2 sinocoso 0.O002p 6 S2 sin2 0

This now allows us to see the re!ative significance (or insignificance) of the off-diagonal terms.
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4. UDUT DECOMPOSITION OF Qk

To decompose the Qk matrix for use in one of the numerically superior "square root"
formulations of the Kalman filter (see for example reference [31), we follow Bierman in using the
Cholesky factorization method. For this we must find matrices U and D such that U is upper triangular
with l's on the diagonal, D is diagonal and positive semi-definite, and

Qk = UDUT (31)

Since Ok is of block diagonal form, it can be easily shown that its square root has the same
block diagonal form, and by simple extension so must its U factor (as is proven in Appendix A below).
Therefore the factorization can be greatly simplified by performing it separately on the diagonal blocks

of Qk"

4.1. EXACT DECOMPOSITION OF THE 2X2 BLOCK

A general factorization for a 2x2 block can be found as follows. We equate the general matrix
to the UDUT product, where U and D are of the required form:

b c 0 1 0 f d (32)

= (e+fd 2 ) fd 1(3[ fd f (33

We then solve for the unknown elements of U and D (e, f and d) as functions of the elements

13



of the general matrix (a, b and c). Therefore, by inspection, the exact solution is:

f C

d - b/c (34)

e a - b 2 /c

This can now be used to find the decomposition of the 2x2 block of Qk, as given in (27). Thus

we take a, b and c are from equation (27) and substitute into (34). The resulting expressions can be

simplified as follows.

f C = Qk( 2 ,2 )

p4T42 4 + 4e - e - 3 (35)
T4J

f T 2At At _ (-At/T4)
2  (-At/T4)

3

p4T41 T4 + 411 - + 2 + 31 ]

_At _(-2t/T4) 2 + }
T2 31

(where we have used the first 4 terms of the Maclaurin series expansion for ex)

T2T -At (At 2 2(At] 3 At At 2 [At] 3

p4 T 42 + 4 4-T4 +22 - F 4 1 I'- +T4 T4 3}

= p4 3T44)

2p4At3  (36)
3T4

This will be a good approximation provided that the discretization interval At is significantly

14



less than the correlation time T4 (which it will be in PLANS).

Now the next term can also be simplified by similarly using the Maclaurin expansion and

ignoring the higher order terms in At/T4:

d = b/c

T4p4( 1 - e)At/T4)2/c (37)

d _ T4p4( I - 1 + At/T4)
2

[2p4At 3 1
3T4

= T4(At/T4)
2

(2At 3 ]
3T4

- 3 (38)
2At

Finally the third term can also be simplified:

e a - b2/c

T44

T42 42pt]42(.- tT)
p4T42T44t + 4 -A'T4-e2Vtq 4 -3j

3T4

2p4At 3T4 3p4At
T4 2T44

15



p4At
- T4 (2 - 3/2)

p4At 
(02T4 (40)

In this case the exact solution of (34) is given by (35), (37) and (39), with a good approximation

given by (36), (38) and (40):

f 2p4At 3

3T4

d 3--_ (41)
2At

e = p4At
e - 2T4

4.2. EXACT DECOMPOSITION OF THE 3X3 BLOCK

The decomposition of the 3x3 block can be found in a similar way:

abd c - 1Ohi k 0 i 01
d e 0 1 j 0 L 0 b 1 0 (42)

c e g 0 0 1 0 0 m i j 1

khL im 1 0 0

0 L jm hi
0 0 M I i j 1

r(k+h2L+i2m) (hL+ijm) im

(hL+ijm) (L+j 2 m) jm (43)

im jm m

16



Therefore we have:

m = g (44)

jmn = e

= j = e/m

= e/g (45)

im = C

= i = c/m

= c/g (46)

L+j2m = d

= L = d- e2/m

= d - e 2 /g (47)

hL+ijm = b

= h = (b -ijm)/L

b - ce/m

d - e2g

b - ce/q (48)

d - e2g

k = a - h2 L - i 2 m

(b -caq) 2 _ c2/g (4()
a - d - e2g

Now when the actual values for a, b, c, d, e and g are substituted from (27) and (42), we obtain

the decomposition of the 3x3 block of the PLANS state vector driving noise covariance matrix, as

follows:

17



_ 2At 3 s2s2p
m sin P6  (50)

3T6

j = coto (51)

2T6SsinO 1 - eAt/T6 (1 -At p6

2At 3

TT6 sincosOp6

3T6 2  [ At
- sAt-sin0 - At/T6(i ) (52)

L d - e'cotO

0 (53)

h= 0 (54)

[2T6SsinO(1- e-At/T6 (1])6k =p6(l - e - 2 A T / T 6 )  -At / T-T6))P6

T/T6)2At
3 2

3T6S2 sin 2 o p6

p6 (-e - 2 A t / T 6 )  61t3l e-At/T6 /_At ]2

Pl /T6) - 6 AtI(1- et T6(l Ip 6  (55)

When these values are substituted into equation (42) we see that the exact decomposition of

3x3 block of Qk has the form:

1 0 i k 0 0 1 0 0

k 0 i cotol 000 0 1 0 (56)
0 0 1 0 0 M i Coto 1

where:

18



m 2At 3 S2 sin 2O P6
3T6

= 3T6 2  1- e-At/T6 A t)

sAt 3 sinO TO - (57)

-2t 6 [ T613{ eAt/T6 At ]p

k = p6 (1 - e- 2 A t / T 6 ) - 6 Lt i _ -A(/T6 2 p6

Now unfortunately this solution does not satisfy the requirement that the diagonal elements (k,

I and m) be non-negative. In particular it can be seen that k can be negative by substituting the model
values for p6 , T6 and At into equation (57). This ;equirement is necessary in order to use the Modified

Weighted Gram-Schmidt algorithm (described in reference (3]), wh;ch is used by PLANS to propagate

the covariance matrix.

However, it is quite common to use a much rougher approximation for the discrete Qk matrix
than is used here. In fact it is common to use OAt in place of the integral of equation '6). This yields a

Qk which is diagonal, and hence has a trivial UDUT decomposition. What has been done for PLANS
however, is to find a decomposition which represents most elements of Qk exactly (including the

diagonal terms) and approximates the others, as described in the next chapter. Although this is not

entirely exact, it is much better than the usual approximation.
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5. A GOOD APPROXIMATION FOR THE 3X3 DECOMPOSITION

First note that Ok is not positive definite. (The rank of the continuous 5x5 Q matrix, as shown

in the bottom right corner of equation (3), is obviously only two.) Therefore the Cholesky

decomposition of Qk does not necessarily exist (see for example reference [4]), as we have indeed

discovered. Of course Q is positive semi-definite (since it is a covariance matrix), which is the more

basic requirement for the Kalman filter equations. In order to use the more numerically stable

algorithms however, a decomposible approximation to Qk must be found.

(After determining that the exact UDUT decomposition had a negative :L-agonal clement,

another decomposition was attempted: the LDLT, which uses lower triangular rather than upper
triangular matrices. This also (perhaps predictably?) produced a negative diagonal element.)

The following approximation was found by inspection:

1 0 a 0 0 0 1 0 0

0 1 bcosO 0 0 0 0 1 0

0 0 bsinO 0 0 C a bcosO bsinO

0 0 ac 1 1 0 0

0 0 bccos I 0 1 0

0 0 bcsinJ a bcosO bsinO

a2c abc"cosO abc"sinO 1
abc"cos6 b 2 c • cos 2 0 b2c•cosOsinO (58)

abc'sinO b2ccosOsinO b2c~sin 2o

By comparing this to equation (27), we see that this already has the correct 0 dependence. In

fact we would have an exact solution if we could find an a, b and c to satisfy the following:

a2c = p6(1-e- 2 A t/T6) (59)

2At
3

b2 c = p6 S2 (60)
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abc = 2P 6 ST6 1 - e-At/T6(0 - -t-) (61)

This does not generally (i.e. for arbitrary values of p6 T6 and At) have an exact solution, as can

be seen by comparing (59)x(60) and (61)2, which should both be equal to (abc) 2 . However, by solving

(59) and (60) exactly and approximating (61) we have:

C = p6

a = 1 - e2At/T6 (62)

b SAt 3T6

This gives an exact solution on the diagonal and latitude/longitude cross terms (the (5,4) and

(4,5) components of this 5x5 block of Qk). The ter , nich are approximated (the (3,4) and (3,5)

components) have the correct sign and t!' ..zorrect 0 dependence. Further analysis indicates that the

approximated terms are smaller than the true terms, provided only that the propagation interval is

sufficiently short:

At < . T6 - 200minutes (63)

which will certainly be the case in PLANS. This can be seen by substituting (62) into (58) and

comparing to (27). Thus this approximation for Qk is certainly better than the simpler OAt

approximation.
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APPENDIX A: !"LOCK DIAGONAL FORM PRESERVATION
UNDER DECOMPOSITION

In this section we shall prove that a block diagonal matrix can be decomposed
(without loss of generality) by decomposing its diagonal blocks. This will be very useful for
implementation of Kalman filters, since state models are often of block diagonal form, with a
separate block for each independent sensor or subsystem. Deriving explicit decompositions
for the corresponding driving noise covariance matrices Qk can then be greatly simplified.

We will first prove the result for a matrix with two blocks on its diagonal. The extension to the

general case is a straightforward application of mathematical induction.

Consider the Cholesky UDUT decomposition of a positive definite square matrix M, which has
two diagonal blocks:

M1

M = M(Al)

H2

0  C 0 E T T
B C

Where A and C are upper triangular matrices with one's on the diagonal, and D and E are diagonal

matrices (with non-zero elements on the diagonal, since M is positive definite). Multiplying (A2) out
we obtain:

T
AD B

0 CE T T

T T T
(ADA +BEB ) BEC

(A3)T T
CEB CEC

23



Now for (A2) to be a decomposition of (Al), the off-diagonal blocks of (A3) must be zero. Thus:

T -
CEB = 0 (A4)

T
BEC = 0 (A5)

Since C is upper triangular with l's on the diagonal, and E is a diagonal matrix, then if we define:

F CE (A6)

we can easily see that F is upper triangular with the (non-zero) elements of E on its diagonal. Then
(A4) becomes:

T
FB = 0 (A7)

el x ... x x

0 e2 ... x x

T... ... ... ... ... B - 0 (A )
0 0 ... e(n-1) x

0 0 ... 0 en

Close examination of (A8) gives us the desired result: Starting with the last row of (A8), we can
see that the bottom row of BT must be zero (since en ;d 0). Given that the bottom row of BT is zero,
then examination of the second last row of (A8) shows that the second last row of BT also must be zero
(since en.l 6 0). This can be continued up the rows to show that all rows of BT are zero. From (A2)
we can then see that the Cholesky decomposition of M is block diagonal, with the same block form as
M.

Now this can easily be generalized to a matrix N with more than two blocks by separating one
block at a time as follows. Let M1 in (Al) be the top block of N, so that M2 contains all the remaining
blocks. The thcorem as it stands proves that M2 can be decomposed separately from M1. Now simply
apply the theorem again to M2 to see that its top diagonal block (the second block of N) can be
decomposed separately from the rest (the third and remaining blocks of N) This can clearly be
repeated until all the blocks have been separated.
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APPENDIX B: POSITION ERROR COVARIANCE PROPAGATION
IN PLANS

The time dependence of the state vector error covariance matrix P, in the absence of

measurement updates, is described by the covariance propagation equation (see for example reference

[51):

Pt+At = 4(t+At) Pt 4T(t+At) + Qk (B1)

Since the latitude and longitude error estimates are the last two elements of the state vector,

the position error covariance is described by the last two diagonal elements of the covariance matrix P.
Thus we will examine the propagation of these last two elements of P. From (B1) we can see that this
involves only the bottom two rows of 4) and their transpose (the last two columns of 4 T). From

equation (5) we can see that the first four columns of the last two rows of 4$ are zero, and can therefore

be ignored.

Equation (27) can be used to obtain the relevant elements of Ok . Here the P6 refers to the
steady state covariance of the sixth state (the odometer scale factor error), as explained by equation
(11). This is a constant which comes from the error model, and has a value of about 0.001

(dimensionless).

If we assign the Markov process covariances, P(5,5) and P(6,6), to their steady state values,

then we would have a gyro heading error P(5,5) of about (0.1 radian) 2 and an odometer scale factor
error P(6,6) of about (1%)2. This is what would be expected in the absence of measurements, and its
reasonableness has been verified by simulation. The relevant portion of (B1) can then be written as

follows, using (5) for the form of 4t and (30) for the form of Qk:

P t+At

0.01 0 d e a b

[ a b 1 0 0 0.0001 f g b -a k ks(
b-a J d+ i (B2)b -a 0 1 d f h i 1 0 ksinUr ksin:

e g i j [ 0 1

where the position error covariance before propagation is:
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h = P(7,7)t (B3)

j = P(8,8)t (B4)

The elements a and b of the propagation matrix are shown in (5) to be:

a = -At S sin (B5)

b = At S cos0 (B6)

Assuming a propagation interval of At = 1 second, the relevant elements of the driving noise

covariance Ok can be found from equation (30), which implies that:

k = 0.0002 P6 S2  (B7)

Multiplying (B2) out we obtain:

Pt+At -

t(0.01a + d) (0.0001b + f) (ad +bf +h) (ae +bg +i) bj j -a

(0.01b + e) (-O.0001a + g) (bd -af + i) (be - ag + j) 1 0

0 1

[(0. 0a 2 +ad+0. 000lb 2 +bf+ad+bf+h) X 1+Q
x (0.01b2+be+0.0001a

2-ag+be-ag+j) +

Therefore, the position error covariance terms are:

P( 7,7 )t+At - (0.01a 2 + 0.0001b2 + 2(ad + bf) + h) + kcos26 (B9)

= P(7,7)t +0.01a 2 + 0.0001b2 + kcos 2o + 2(ad + bf)

p(7,7)t + S2( 0.01sin2O + O lcos2O + Q0II0l0cos 2O) + 2S( -ind + cos0f) (B1O)
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P(8,8)t+At- (O.01b2 + O.0001a 2 + 2(be - ag) + j)) + ksin 2O (Bl)

= P(8,8)t +0.01b 2 + 0.0001a2 + ksin2o + 2(be - ag)

P(8,8)t + $2( 0.01cos20 + OX1Dlsin 2O + OOIIl2sin2O) + 2S( cos~e + sin0g) (B12)

Thus the position covariance can decrease in the absence of measurements, if the underlined

terms in equations (B10) and (B12) are large enough in the negative sense. This will happen for certain

values of heading 0 and speed S, provided the d, e, f and g terms are not too small. Simulations have

shown that these terms can be large enough to cause P(7,7) and P(8,8) to decrease, particularly in the

absence of position measurements. The physical interpretation is that while the vehicle is heading back

towards its point of origin the heading and speed errors start to cancel the "outbound" errors. In the

absence of position update measurements (from GPS or Transit) the outbound position errors will of

course be caused entirely by the heading and speed errors, and will therefore be statistically correlated

to them through the cross covariances d, e, f and g.
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